Beat the Squeeze: Equalize Like a Pro

- How Your Ears Respond to Pressure.
- 6 Methods to Equalize Your Ears.
- 10 Tips that Make Equalizing Easier.
- How to Deal with Other Ear Problems.
The purpose of this Smart Guide is to help you understand how your ears respond to pressure and the best ways to protect them while scuba diving.

From simple cases of swimmer’s ear to the serious and sometimes lasting damage of barotrauma, divers are vulnerable to ear problems because the delicate mechanisms that govern our hearing and balance just aren’t designed for the rapid pressure changes that result from diving.

Fortunately, ear injuries are preventable.

Your middle ears are dead air spaces, connected to the outer world only by the Eustachian tubes running to the back of your throat.

If you fail to increase the pressure in your middle ears to match the pressure in your outer and inner ears, the result is painful middle ear barotrauma, the most common pressure-related ear injury.

The key to safe equalizing is opening the normally closed Eustachian tubes. Each has a kind of one-way valve at its lower end called the “Eustachian cushion,” which prevents contaminants in your nose from migrating up to your middle ears. Opening the tubes, to allow higher-pressure air from your throat to enter your middle ears, normally requires a conscious act. Swallowing usually does it.

You equalize your ears many times a day without realizing it, by swallowing. Oxygen is constantly absorbed by the tissues of your middle ear, lowering the air pressure in those spaces. When you swallow, your soft palate muscles pull your Eustachian tubes open, allowing air to rush from your throat to your middle ears and equalize the pressure. That’s the faint “pop” or “click” you hear about every other swallow.

Scuba diving, however, subjects this equalization system to much greater and faster pressure changes than it’s designed to handle. You need to give it help.
If you dive without equalizing your ears, you can experience painful and damaging middle ear barotrauma. Step-by-step, here’s what happens when you DON’T equalize:

<table>
<thead>
<tr>
<th>FEET</th>
<th>EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>At one foot (.305 meters) below the surface water pressure against the outside of your eardrums is 0.445 psi (.031 bar) more than on the surface air pressure on the inside. They flex inward and you feel pressure in your ears.</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>At four ft (1.219 m) the pressure difference increases to 1.78 psi (.123 bar). Your eardrums bulge into your middle ears, so do the round windows and oval windows between your middle and inner ears. Nerve endings in your eardrum are stretched. You begin to feel pain.</td>
</tr>
<tr>
<td>5</td>
<td>At six ft (1.829 m) the pressure difference is 2.67 psi (.184 bar). Your eardrum stretches further. Its tissues begin to tear, causing inflammation that will last up to a week. Small blood vessels in your eardrums may expand or break, causing bruising which will last up to three weeks. Your Eustachian tubes are now locked shut by pressure, making equalization impossible. Pain increases.</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>At eight ft (2.438 m) the pressure difference is 3.56 psi (.245 bar). If you are lucky, blood and mucus is sucked from surrounding tissues and begins to fill your middle ear. This is called middle ear barotrauma. Fluid, not air, now equalizes pressure on your eardrums. Pain subsides, replaced by a feeling of fullness in your ears which will remain for a week or more until the fluid is reabsorbed by your body.</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>At 10 ft (3.048 m) the pressure difference is 4.45 psi (.307 bar). If you aren’t so lucky—if your descent is very fast, for example—your eardrums may break. Water will flood your middle ear. The sudden sensation of cold against your balance mechanism (vestibular canals) may cause vertigo, especially if only one eardrum breaks. Suddenly, the world is spinning around you, though the sensation will probably stop when your body warms up the water in your middle ear. Or, if you try to equalize by blowing hard and long against pinched nostrils, you may rupture the round window membrane between your middle and inner ears. This is called inner ear barotrauma. Perilymph fluid drains from the cochlea into the middle ear. Temporary or sometimes permanent, hearing loss may result.</td>
</tr>
</tbody>
</table>
All methods for equalizing your ears are simply ways to open the lower ends of your Eustachian tubes, so air can enter.

**PINCH YOUR NOSE AND BLOW (VALSALVA MANEUVER)**

This is the method most divers learn: Pinch your nostrils (or close them against your mask skirt) and blow through your nose. The resulting overpressure in your throat usually forces air up your Eustachian tubes.

But the Valsalva maneuver has three problems:

1. It does not activate muscles which open the Eustachian tubes, so it may not work if the tubes are already locked by a pressure differential.
2. It’s too easy to blow hard enough to damage something.
3. Blowing against a blocked nose raises your internal fluid pressure, including the fluid pressure in your inner ear, which may rupture your "round windows." So don’t blow too hard, and don’t maintain pressure for more than five seconds.

Swallowing—and various methods of equalizing—are all ways of opening the normally closed Eustachian tubes, reducing the pressure differential between the outer ear and inner ear. The safest clearing methods utilize the muscles of the throat to open the tubes. Unfortunately, the Valsalva maneuver that most divers are taught does not activate these muscles, but forces air from the throat into the Eustachian tubes.

That’s fine as long as the diver keeps the tubes open ahead of the exterior pressure changes. However, if a diver does not equalize early or often enough, the pressure differential can force the soft tissues together, closing the ends of the tubes. Forcing air against these soft tissues just locks them shut. No air gets to the middle ears, which do not equalize, so barotrauma results. Even worse, blowing too hard during a Valsalva maneuver can rupture the round and oval windows of the inner ear.
OTHER METHODS, SOME SAFER, INCLUDE:

Passive
**REQUIRES NO EFFORT**
Typically occurs during ascent.

Voluntary Tubal Opening
**TENSE YOUR THROAT AND PUSH YOUR JAW FORWARD**
Tense the muscles of the soft palate and the throat while pushing the jaw forward and down as if starting to yawn. These muscles pull the Eustachian tubes open. This requires a lot of practice, but some divers can learn to control those muscles and hold their tubes open for continuous equalization.

Toynbee Maneuver
**PINCH YOUR NOSE AND SWALLOW**
With your nostrils pinched or blocked against your mask skirt, swallow. Swallowing pulls open your Eustachian tubes while the movement of your tongue, with your nose closed, compresses air against them.

Frenzel Maneuver
**PINCH YOUR NOSE AND MAKE THE SOUND OF THE LETTER “K”**
Close your nostrils, and close the back of your throat as if straining to lift a weight. Then make the sound of the letter “K.” This forces the back of your tongue upward, compressing air against the openings of your Eustachian tubes.

Lowry Technique
**PINCH YOUR NOSE, BLOW AND SWALLOW**
A combination of Valsalva and Toynbee: while closing your nostrils, blow and swallow at the same time.

Edmonds Technique
**PINCH YOUR NOSE AND BLOW AND PUSH YOUR JAW FORWARD**
While tensing the soft palate (the soft tissue at the back of the roof of your mouth) and throat muscles and pushing the jaw forward and down, do a Valsalva maneuver.

PRACTICE MAKES PERFECT

Divers who experience difficulty equalizing may find it helpful to master several techniques. Many are difficult until practiced repeatedly, but this is one scuba skill you can practice anywhere. Try practicing in front of a mirror so you can watch your throat muscles.
WHEN TO EQUALIZE

Sooner, and more often, than you might think. Most authorities recommend equalizing every two feet (.610 meters) of descent. At a fairly slow descent rate of 60 ft (18.288 m) per minute, that’s an equalization every two seconds. Many divers descend much faster and should be equalizing constantly.

The good news: as you go deeper, you’ll have to equalize less often—another result of Boyle’s Law. For example, a descent of six ft (1.829 m) from the surface will compress your middle ear space by 20% and produce pain. But from 30 ft (9.144 m) you’d have to descend another 12.5 ft (3.81 m) to get the same 20% compression.

When you reach your maximum depth, equalize again. Though the negative pressure in your middle ear may be so small that you don’t feel it, if it’s maintained over several minutes it can gradually cause barotrauma.
10 TIPS FOR EASY EQUALIZING

1. LISTEN FOR THE “POP”
   Before you even board the boat, make sure that when you swallow you hear a “pop” or “click” in both ears. This tells you both Eustachian tubes are open.

2. START EARLY
   Several hours before your dive, begin gently equalizing your ears every few minutes. “This has great value and is said to help reduce the chances of a block early on descent,” says Dr. Ernest S. Campbell, webmaster of “Diving Medicine Online.” “Chewing gum between dives seems to help,” adds Dr. Campbell.

3. EQUALIZE AT THE SURFACE
   Pre-pressurizing” at the surface helps get you past the critical first few feet of descent, where you’re often busy with dumping your BCD and clearing your mask. It may also inflate your Eustachian tubes so they are slightly bigger. The guide here is to pre-pressurize only if it seems to help you and to pressurize gently.

4. DESCEND FEET FIRST
   Air tends to rise up your Eustachian tubes, and fluid-like mucus tends to drain downward. Studies have shown a Valsalva maneuver requires 50% more force when you’re in a head-down position than head-up.

5. LOOK UP
   Extending your neck tends to open your Eustachian tubes.

6. USE A DESCENT LINE
   Pulling yourself down an anchor or mooring line helps control your descent rate more accurately. Without a line, your descent rate will probably accelerate much more than you realize. A line also helps you stop your descent quickly if you feel pressure, before barotrauma has a chance to occur.

7. STAY AHEAD
   Equalize often, trying to maintain a slight positive pressure in your middle ears.

8. STOP IF IT HURTS
   Don’t try to push through pain. Your Eustachian tubes are probably locked shut by pressure differential, and the only result will be barotrauma. If your ears begin to hurt, ascend a few feet and try equalizing again.

9. AVOID TOBACCO AND ALCOHOL
   Both tobacco smoke and alcohol irritate your mucus membranes, promoting more mucus that can block your Eustachian tubes.

10. KEEP YOUR MASK CLEAR
    Water up your nose can irritate your mucus membranes, which then produce more of the stuff that clogs.
**How to Deal with Other Ear Problems**

### Middle Ear Barotrauma on Ascent, or Reverse Squeeze

**What happens:** Pressure must be released from your middle ear as you ascend, or the expanding air will bulge and even break your eardrums. Normally, expanding air escapes down your Eustachian tubes, but if the tubes are blocked with mucus at depth (usually the result of poor equalization on descent, diving with a cold or relying on decongestants that wear off at depth), barotrauma can result.

**What you feel:**
- Pressure, then pain.
- Some divers also feel vertigo from the unusual pressure on their balance mechanism.

**What to do:** Sometimes one of the equalizing techniques used on descent will clear your ears on ascent. Pointing the affected ear toward the bottom may help, too. Ascend as slowly as your air supply allows, remembering that the last 30 feet will be most difficult. Otherwise, you will just have to endure the pain to reach the surface.

### Inner Ear Barotrauma

**What happens:** Sometimes, the stresses on your middle ear—from not equalizing or from trying too hard with a Valsalva technique—damage the adjacent inner ear hearing structures (the cochlea) and balance structures (the vestibular canals), and permanent incapacity can result.

**What you feel:**
- **Deafness:** Hearing loss can be complete, instant and permanent, but divers usually lose just the higher frequencies. The loss becomes noticeable only after a few hours. You may not be aware of the loss until you have a hearing test.
- **Ringing:** You may experience “tinnitus,” a ringing or hissing in your ears.
- **Vertigo:** The sense that the world is whirling around you, often accompanied by nausea.

**What to do:** Abort the dive and go as soon as possible to an ear, nose and throat specialist with experience treating divers. Inner ear injuries are tricky and require prompt, correct treatment from a specialist.
OUTER EAR BAROTRAUMA

What happens: If your ear canal is blocked by a tight hood, a glob of wax or a non-vented ear plug, it becomes another dead air space that can’t equalize on descent. Your eardrum bulges outward, and increasing pressure in the surrounding tissues fills the canal with blood and fluid.

What you feel: It feels similar to middle ear barotrauma.

What to do: Keep your outer ear clear, which can be difficult for divers with exospores. These are hard, bony growths in the ear canal that can trap dirt and wax and even grow so big they completely block the ear canal. They are believed to be caused by repeated contact with cold water.

Prevention: Wear a hood. It will reduce the flow of water to your ears, and what does reach them will be warmer.

Can You Bend Your Ears? Yes. It’s called inner ear DCS (decompression sickness) and happens when micro bubbles form in the fluid-filled spaces of the inner ear, the cochlea and vestibular canals, following decompression. Symptoms are deafness, vertigo and tinnitus not attributable to barotrauma damage, and can occur without signs of central nervous system DCS, such as tingling and joint pain.

Bottom line: If you’ve pushed the limits, be alert for inner ear symptoms and go immediately to a specialist if you experience any problems. Barotrauma damage and DCS damage to the inner ear have similar symptoms, but the treatment is very different. Recompression, which helps when the cause is DCS, can make the problem worse when the cause is barotrauma.

CAN YOU DIVE WITH BAROTRAUMA?

OK, so you messed up on your first dive of your vacation, didn’t listen to the pain in your ears, and now you’ve got middle ear barotrauma. Your ears feel “full” (they are: with blood and mucus) and you can’t hear too well.

But you feel fine, and equalizing is no longer a problem. Can you continue to dive for the rest of the week you paid so much for?

Some divers do, but they are taking a serious risk of permanent loss of hearing or, even worse, balance control. In addition to the obvious risk of infection, remember that you can’t be sure you haven’t also damaged your inner ear at the same time. Symptoms of the latter aren’t always strong or immediate. All the medical advice says that if you’ve suffered middle-ear barotrauma, get out of the water and stay out until it clears up.

For more information, pick up a copy of The Ears & Diving reference booklet.
Vertigo, the sense that the world is spinning around you, is a common symptom of middle ear or inner ear injury. That’s because your balance mechanisms, called the vestibular canals, are located adjacent to both ear spaces. In fact, they’re considered part of your inner ears, and separated from the cochlea (the hearing structures) by the thinnest membranes in your body—two cells thick.

If vertigo happens under water, you may not be able to tell which way is up and panic. (Emergency tip: watch the water in your mask to judge your orientation and follow your bubbles, slowly, to the surface.) Additionally, vertigo is often accompanied by vomiting. Be prepared, but don’t be alarmed.

Damage to your vestibular canals, whether by DCS or by pressure shock, is usually permanent. Vertigo may go away in two to six weeks because your brain learns to compensate and ignores the side that’s damaged, but the canal will not heal. Damage the vestibular canals on the other side too, and you could be unable to drive a car, much less dive.

Vertigo can also occur from stimulation of one side and not the other—the pressure difference if only one ear equalizes or the temperature difference if cold water enters one ear but not the other. In both cases, your brain interprets unequal stimulation of your vestibular systems as movement. This type of vertigo disappears with the unequal stimulation, fortunately, and leaves no after-effects.
BECOME A DAN MEMBER

Dive safety should be taken seriously. When you join DAN, your exclusive member benefits ensure you have access to invaluable resources including:

24-HOUR EMERGENCY HOTLINE 0800 020 111 (SA) OR +27 828 10 60 10 (INT.)
Help is just a phone call away anytime, anywhere.

EMERGENCY EVACUATION BENEFITS
Evacuation in a medical emergency when you travel more than 100 km from home or when you are on a dive trip. This includes non-diving, emergency medical expenses when you are travelling outside your country of permanent residence.

DIVE ACCIDENT COVER
Access to premier dive accident membership benefits. This includes the cost of hospitalisation, medical and hyperbaric treatment, and certain other costs associated with diving-related accidents.

MEDICAL INFORMATION LINE
Access to the latest medical information for the prevention, identification and treatment of diving injuries.

ALERT DIVER MAGAZINE
DAN’s members-only magazine features dive-related medical and research information, underwater photography, dive travel and marine environmental issues.

Plus, your DAN membership supports the ongoing research, medical programs and education that promote the awareness of dive safety and ensures the availability of medical resources if and when you need them.

LEARN MORE AT DAN.ORG/HEALTH